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Motivating Question

How do microscopic changes in the 
structure of the heart tissue, such as those 
caused by aging and diseases, affect the 

electrical conduction of the heart?



Outline

• Background
• Methodology of Paired Computational and 

Experimental Studies
• Effects of Microheterogeneities on 

Conduction



Fibrosis Distorts Conduction

Zhang et al. 2013; 
Adapted from de Jong et al. 2011
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Red: Normal cardiac muscle
Blue: Collagen

Arrow: Muscle breakdown 



Tissue Geometry Alters Conduction
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Stimulus Site Recording Electrodes

Adapted from Rohr and Kucera 1997



What about more complex fibrosis?

• Individual heterogeneities change 
geometry and modulate local conduction

• à What is the effect of numerous 
heterogeneities in aggregate (i.e. complex 
fibrosis)?



Engineered Excitable Cells for 

Paired Studies

• HEK-293 cell + Nav1.5 + Kir2.1 + Cx43

– Excitable ”Ex293 cells”
– Kirkton et al. 2011

• Mathematical model of Ex293 cells

– Inter-cell variability in current densities
– Gokhale et al. 2017
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Regular patterns of heterogeneity
Idealized geometry of fibrotic tissue with regularly spaced and 
equally sized non-conductive heterogeneities

Obstacle 
Width

Strand
Width

Strand Width

Obstacle 
to Strand 

Ratio

Obstacle 
Width 

Strand 
Width

Obstacle 
Density

0 ⎯⎯ ⎯⎯ 0 %

0.3 150 µm 520 µm 5 % 

0.6 150 µm 240 µm 15 %

1.5 150 µm 100 µm 35 %

3.0 300 µm 100 µm 56 %

5.0 500 µm 100 µm 69 %

7.0 700 µm 100 µm 77 %

Non-conductive
heterogeneities

Ex293 
cells



Regular patterns of heterogeneity

Obstacles patterned as 150 µm in width were 151.7 
µm to 162.6 µm after 4 days of culture

Control Obstacle to Strand: 1.5 Obstacle to Strand: 7.0

Scale bar: 150 µm

Non-conductive
heterogeneities

Ex293 
cells



Effects of Heterogeneity

Obstacle-to-Strand Ratio: 0
Relative CV: 1.0

Obstacle-to-Strand Ratio: 1.5
Relative CV: 0.862

Obstacle-to-Strand Ratio: 7.0
Relative CV: 0.794

CV: Conduction velocity

0.5 cm
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Mean � self; Asterisk indicates difference 
from 0 case

AP: Action potential

Effects of Heterogeneity
• Heterogeneities lead to conduction slowing and 

shortened action potential duration
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Curvature anisotropy: ratio of 
distance along diagonal (black) to 
distance along principal axes (red)
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Effects of Heterogeneity
• Heterogeneities cause change in the curvature of 

the macroscopic wavefront



Model Specifications

• Monodomain formulation
• Finite differences discretization of 

spatial operator with dx = dy = 10 µm
• Obstacles with no-flux boundaries
• Simulated potentials processed to 

make comparable to experimental 
optical mapping data
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Obstacle-to-Strand: 0 Obstacle-to-Strand: 7.0

Comparing Model and Experiments



Comparing Model and Experiments
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• Model recapitulates conduction slowing and curvature

Limitation: model 
does not replicate 
reduction in AP 
duration
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AP: Action potential



Factors Affecting Macroscale 
Conduction
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Depends on total path length Depends on microscale conduction 
velocity



Conduction with Heterogeneities
Presence of heterogeneities causes path tortuosity

: Stimulus



Evaluating Effect of Path Tortuosity 
with Automata Models
• Rules-based approach
• Each node exists in one of fixed # of states
• Limitation: ignores effects of electrical load

– à Allows us to isolate impact of path tortuosity by removing 
effects of source-load mismatches on local conduction velocity
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Effect of Path Tortuosity
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Effect of Path Tortuosity
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∴ Path tortuosity alone does not explain the observed macroscopic changes.
There must be local variation in microscopic conduction velocity that directly 
affects macroscale behavior

Difference in Activation Tim
e (m

s)

   Biophysical Activation Isochrone
   Automata Activation Isochrone   Biophysical Activation Isochrone
   Automata Activation Isochrone
(True	Conduction	 Behavior)

(Effect	of	Path	Tortuosity	Only)



Regions of Focus for Studying 
Microscale Behavior

: Stimulus

Branching Sites:
Arriving wavefront 
branches in three 

directions

Intersection Sites:
Two wavefronts 

arriving 
simultaneously 



Behavior Along Principal Axes

Predicted activation 
without delay

Actual activation

à Branching along principal axes leads 
to conduction slowing

Activation 
Isochrones



a b

c d

(dVm/dt)max : Maximal upstroke velocity

Behavior Along Principal Axes



Net Effect of Branching Delays 

à Branching related slowing is the primary mechanism of microscale conduction 
variation along the principal axes

Error in Automata Model Along Principal Axis

Delay Due to Slowing at Branching Sites 

2 mm

: Stimulus



Predicted activation 
without acceleration

Actual activation

Wavefront collisions at intersections accelerate 
propagation

Behavior At Intersection Sites



Behavior At Intersection Sites



Recap
• Source-load imbalances à Changes 

in microscale conduction
– Conduction slowing at branching 

sites
– Conduction speeding at 

intersections
• Path tortuosity + source-load 

imbalances à macroscopic slowing 
and wavefront curvature changes

• How does reduced excitability affect 
these macro- and micro-scale 
behaviors?



Macroscopic Behavior Under 
Reduced Excitability

Obstacle-to-Strand Ratio: 3.0 Obstacle-to-Strand Ratio: 3.0
With 100 µm TTX

Reduced sodium excitability results in slowing and a change in 
wavefront curvature 

TTX: tetrodotoxin, Na+ channel blocker



Conduction Slowing due to 
Reduced Excitability
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Model exhibits block at OSR of 3.0
Experiments show wavebreak and meandering at 

OSR 5.0 and not sustained at 7.0
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Reduced Excitability Attenuates 
Heterogeneity-Related Curvature Anisotropy
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TTX: tetrodotoxin, Na+ channel blocker



Conduction Slowing due to 
Reduced Excitability is Anisotropic

TTX: tetrodotoxin, Na+ channel blocker



Effects of Reduced Excitability

32

Global slowing of conduction within 
strands

Control Reduced Excitability

CV: Conduction velocity



Effects of Reduced Excitability

33

Increased delay at branches and no change in acceleration at collisions drives change in 
wavefront curvature

Control Reduced Excitability



Conclusions

• Reduced excitability à greater slowing at branches à
exaggerated effect of collisions à rounder wavefronts and 
slowed conduction 

34

Regular heterogeneities 
Conduction slowing &

Wavefront curvature anisotropy
Path tortuosity

Effects of source-load mismatch:

Branching à
Slowing

Collisions à
Speeding

Previously described by Fast, Kleber,
Rohr, Kucera and others

Novel mechanism of microscale
conduction modulation



Limitations

• Highly idealized geometry of fibrosis
• Complexity of real myocardium (3D 

structure, fibroblasts etc)
• Question of APD reduction at high 

obstacle-to-strand ratios



Future Directions

• Incorporation of local anisotropy to try to 
understand changes in APD

• Effect of heterogeneities on dynamic 
properties (i.e. restitution, rate 
dependence, reentry)

• Transition to realistic, histologically-
inspired tissue structure (fibrosis 
distribution, fibroblasts, anisotropy etc)
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