Modeling approaches to characterizing irregular conduction in micro-heterogeneous tissues

> <u>Tanmay Gokhale</u>, Huda Asfour, Nenad Bursac and Craig Henriquez

> > MD-PhD Student Duke University Durham, North Carolina

Duke

PRATT SCHOOL OF Engineering

## **Motivating Question**

How do microscopic changes in the structure of the heart tissue, such as those caused by aging and diseases, affect the electrical conduction of the heart?



## Outline

- Background
- Methodology of Paired Computational and Experimental Studies
- Effects of Microheterogeneities on Conduction



#### **Fibrosis Distorts Conduction**

Healthy Control

Atrial Fibrillation



Red: Normal cardiac muscle Blue: Collagen Arrow: Muscle breakdown

Zhang et al. 2013; Adapted from de Jong et al. 2011







#### **Tissue Geometry Alters Conduction**





Adapted from Rohr and Kucera 1997

## What about more complex fibrosis?

- Individual heterogeneities change geometry and modulate local conduction
- → What is the effect of numerous heterogeneities in aggregate (i.e. complex fibrosis)?



# Engineered Excitable Cells for Paired Studies

I<sub>Na</sub>

 $I_{K}$ 

I<sub>Na.wt</sub>

I<sub>K.wt</sub>

G

- HEK-293 cell + Na<sub>v</sub>1.5 + K<sub>ir</sub>2.1 + Cx43
  - Excitable "Ex293 cells"
  - Kirkton et al. 2011
- Mathematical model of Ex293 cells
  - Inter-cell variability in current densities
  - Gokhale et al. 2017



# Regular patterns of heterogeneity

Idealized geometry of fibrotic tissue with regularly spaced and equally sized non-conductive heterogeneities



| Obstacle<br>to Strand<br>Ratio | Obstacle<br>Width | Strand<br>Width | Obstacle<br>Density |
|--------------------------------|-------------------|-----------------|---------------------|
| 0                              |                   | _               | 0 %                 |
| 0.3                            | 150 µm            | 520 µm          | 5 %                 |
| 0.6                            | 150 µm            | 240 µm          | 15 %                |
| 1.5                            | 150 µm            | 100 µm          | 35 %                |
| 3.0                            | 300 µm            | 100 µm          | 56 %                |
| 5.0                            | 500 µm            | 100 µm          | 69 %                |
| 7.0                            | 700 µm            | 100 µm          | 77 %                |



## Regular patterns of heterogeneity



Control

Obstacle to Strand: 1.5

Obstacle to Strand: 7.0

Obstacles patterned as 150  $\mu m$  in width were 151.7  $\mu m$  to 162.6  $\mu m$  after 4 days of culture



#### Effects of Heterogeneity



Obstacle-to-Strand Ratio: 0 Relative CV: 1.0 Obstacle-to-Strand Ratio: 1.5 Relative CV: 0.862 Obstacle-to-Strand Ratio: 7.0 Relative CV: 0.794

0.5 cn



CV: Conduction velocity

## Effects of Heterogeneity



Mean  $\pm$  se; n = 13-68 monolayers Asterisk indicates difference from 0 case





AP: Action potential

## Effects of Heterogeneity



Curvature anisotropy: ratio of distance along diagonal (black) to distance along principal axes (red) Mean ± sd; n = 10-15 monolayers \* and # indicate difference from all lower



## **Model Specifications**

- Monodomain formulation
- Finite differences discretization of spatial operator with  $dx = dy = 10 \ \mu m$
- Obstacles with no-flux boundaries
- Simulated potentials processed to make comparable to experimental optical mapping data



#### **Comparing Model and Experiments**



## **Comparing Model and Experiments**



## Factors Affecting Macroscale Conduction

= Distance Of Conduction Path

Conduction Velocity

Time to Travel -----

Depends on total path length

Depends on microscale conduction velocity



## **Conduction with Heterogeneities**

Presence of heterogeneities causes path tortuosity





**n**: Stimulus

# Evaluating Effect of Path Tortuosity with Automata Models

- Rules-based approach
- Each node exists in one of fixed # of states
- Limitation: ignores effects of electrical load
  - → Allows us to isolate impact of path tortuosity by removing effects of source-load mismatches on local conduction velocity



#### Effect of Path Tortuosity







#### Effect of Path Tortuosity





 Biophysical Activation Isochrone (True Conduction Behavior)
Automata Activation Isochrone (Effect of Path Tortuosity Only)

∴ Path tortuosity alone does not explain the observed macroscopic changes. There must be local variation in microscopic conduction velocity that directly affects macroscale behavior

# Regions of Focus for Studying Microscale Behavior



Duke

#### **Behavior Along Principal Axes**



NOINFERING

#### **Behavior Along Principal Axes**



## Net Effect of Branching Delays



→ Branching related slowing is the **primary mechanism of microscale conduction variation** along the principal axes



#### **Behavior At Intersection Sites**



Duke

#### **Behavior At Intersection Sites**





# Recap



- Source-load imbalances → Changes in microscale conduction
  - Conduction slowing at branching sites
  - Conduction speeding at intersections
- Path tortuosity + source-load imbalances → macroscopic slowing and wavefront curvature changes
- How does reduced excitability affect these macro- and micro-scale behaviors?



# Macroscopic Behavior Under Reduced Excitability



Obstacle-to-Strand Ratio: 3.0

Obstacle-to-Strand Ratio: 3.0 With 100 µm TTX

Reduced sodium excitability results in slowing and a change in wavefront curvature





# Conduction Slowing due to Reduced Excitability



Model exhibits block at OSR of 3.0 Experiments show wavebreak and meandering at OSR 5.0 and not sustained at 7.0



#### Reduced Excitability Attenuates Heterogeneity-Related Curvature Anisotropy



TTX: tetrodotoxin, Na<sup>+</sup> channel blocker

## Conduction Slowing due to Reduced Excitability is Anisotropic





TTX: tetrodotoxin, Na<sup>+</sup> channel blocker

#### Effects of Reduced Excitability



Global slowing of conduction within strands



32 CV: Conduction velocity

#### Effects of Reduced Excitability



Increased delay at branches and no change in acceleration at collisions drives change in wavefront curvature

# Conclusions

**Regular heterogeneities** 



Reduced excitability  $\rightarrow$  greater slowing at branches  $\rightarrow$ lacksquareexaggerated effect of collisions  $\rightarrow$  rounder wavefronts and slowed conduction



Conduction slowing &

#### Limitations

- Highly idealized geometry of fibrosis
- Complexity of real myocardium (3D structure, fibroblasts etc)
- Question of APD reduction at high obstacle-to-strand ratios



#### **Future Directions**

- Incorporation of local anisotropy to try to understand changes in APD
- Effect of heterogeneities on dynamic properties (i.e. restitution, rate dependence, reentry)
- Transition to realistic, histologicallyinspired tissue structure (fibrosis distribution, fibroblasts, anisotropy etc)



## Thank you!

<u>Henriquez Lab</u> Prof. Craig Henriquez Letitia Hubbard, PhD Eli Medvescek Shravan Verma, MD

Bursac Lab Prof. Nenad Bursac Rob Kirkton, PhD Huda Asfour, PhD Hung Nguyen, PhD Duke Research Computing Tom Milledge Mark DeLong

<u>Funding Sources:</u> NHLBI NIGMS (MSTP T32)



#### Thank you!



Word cloud of dissertation

