Continuous Models Fail to Capture Details of Reentry in Fibrotic Myocardium

Tanmay Gokhale, Eli Medvescek and Craig Henriquez Duke University

Duke

PRATT SCHOOL OF Engineering

Outline

- Discrete vs Continuous Models

 and how they're used to model fibrosis
- Comparing re-entry in discrete model of fibrosis versus homogenized continuous model of fibrosis
- Examining re-entry in "hybrid" continuous model with discrete discontinuities

Microstructural Discrete Models

В

А

Hubbard and Henriquez. Europace 2012

Kim and Henriquez. *Biophysical Journal.* 2010

Continuous Models

- Substantially increase computational efficiency
 - Decrease spatial discretization from 5-20µm to 100-200 µm in each dimension
- Electrical properties selected to match experimental macroscopic conduction velocities and anisotropy

– Able to reproduce conduction with high fidelity

Modeling Tissue Fibrosis

- Disease state with collage deposition, fibroblast proliferation and gap junctional modification
- Enhanced collagen density associated with conduction slowing, conduction heterogeneity and arrhythmogenesis

Modeling Fibrosis - Discrete

Histologically accurate

Electrical decoupling only

Kim, JM A Discrete Monolayer Cardiac Tissue Model for Tissue Preparation Specific Modeling. Thesis. Duke University

Spach et al. Heart Rhythm. 2007

Modeling Fibrosis - Continuous

Reduced conductivities

Accurate spatial representation

Node decoupling

Hooks et al. Circulation Research. 2002

Motivation

 How well can continuous models recreate complex conduction behaviors like reentry that are critical in arrhythmogenesis?

Three Models of Fibrosis

Discrete dx: 20 µm Up to 30% fibrosis (700 µm mean length) Continuous dx: 100 µm Reduced conductivities

Hybrid dx: 100 µm Up to 30% fibrosis (700 µm mean length) + partially reduced conductivities

All models are 2 cm x 2 cm

Motivation

 How well can continuous models recreate complex conduction behaviors like reentry that are critical in arrhythmogenesis?

 Part 1: Compare discrete model with "equivalent" continuous model w/ modified conductivities

Discrete Fibrotic Model

Discrete Fibrotic Model

- dx = dy = 20 µm
- Average cell size: 100 μm x 20 μm
- Transverse decoupling for adult phenotype
- + Collagenous septa that cover between 0% and 30% of the total lateral cell surface

- Mean length: 700 um; Poisson distribution

Numerical Methods

- Bondarenko mouse membrane model
- Simulations performed using Cardiowave (http://cardiowave.duke.edu)

Discrete Fibrotic Model

Using these conduction velocities, equivalent continuous models were developed

Reentry in Fibrotic Model

Discrete 30% fibrosis

Continuous Reduced conductivities

Comparison of Discrete and Continuous Model Reentry

Comparison of Discrete and Continuous Model Reentry

Comparing Tip Trajectory

Activation Time (ms)

0.4

0.8

1.2

0

Discrete Longer and thinner tip trajectory; no unexcitable core

Continuous Shorter, elliptical tip trajectory with unexcitable core

0.8

0.4

90

80

70

60

50

40

30

20

10

0

1.2

Activation Time (ms)

Effect of Fibrosis on Restitution

Summary: Factors Affecting Cycle Length

Tip Path Length – model with discrete heterogeneities able to capture anatomical reentry around sub-mm scale discontinuities

Local CV – dependent not only on macroscopic CV at pacing rate but also CV at shorter diastolic intervals (i.e. restitution)

Motivation

- How well can continuous models recreate complex conduction behaviors like reentry that are critical in arrhythmogenesis?
 - Part 1: Homogenized continuous model of fibrosis doesn't do a great job capturing dynamic of reentry
 - Part 2: Compare discrete model with "hybrid" continuous model w/ modified conductivities

"Hybrid Models"

- Continuous models with discrete discontinuities
 - Include some collagenous septa
 - Reduced total collagen length because of larger discretization
 - Tissue conductivities adjusted so that combination of septa and tissue give same macroscopic CV as discrete model
- "Discontinuous" or "continuous with discontinuities"

Hybrid models

Reentry in hybrid model

Conduction slowing in hybrid

Comparing Tip Trajectory

Impact of septa size

At what size scale do the discontinuities created by septa become important?

Conclusions

- Local discontinuities due to fibrosis appear to have a significant impact on complex conduction behavior
- Neither the homogenous continuous model nor the "hybrid" model are able to fully capture this effect for larger (but still sub-millimeter) discontinuities
- Limitations:
 - 2D model, perfectly regular cells
 - Mouse membrane model

Conclusions

- Hybrid model is promising in capturing discrete behavior – other approaches to selecting hybrid model parameters may improve accuracy
- Take Away: Important to consider and validate methodology of modeling fibrosis prior to implementation in clinically relevant models

Thank you

- Duke Department of Biomedical Engineering
 - Craig Henriquez, PhD
 - Eli Medvescek
 - Nenad Bursac, PhD
- Duke Medical Scientist Training Program

Funding sources: National Institutes of Health Grant R01-HL093711 to C.H. and the MSTP Training Grant T32-GM007171

PRATT SCHOOL OF Engineering

APD Restitution

