
INTRODUCTION 
 

In recent years, advances in tissue engineering techniques have allowed 
for micro-patterning of cardiac cells in engineered monolayers with 
controlled anisotropy, fiber direction and spacing. These techniques are a 
valuable tool that can be used to observe the effect of cellular properties 
(orientation, connectivity, etc) on cardiac conduction.  However, there are 
inherent limitations in experimental preparations that limit the ability to 
understand the role of cellular structure on propagation, and the use of 
computational simulations has allowed for numerous insights into the 
electrophysiological properties of cardiac tissue that are not possible 
through experimental preparations alone. 
 
Simulations of discrete cardiac tissue can incorporate cellular level detail, 
but these simulations are computationally difficult and time-consuming; 
instead, continuous bidomain simulations can provide similar levels of 
insight while significantly simplifying the computational load of each 
problem. The continuous model requires as parameters the effective 
intracellular and extracellular conductivities of the tissue which are 
homogenized values that are affected by the tissue geometry, coupling, 
and many other physical factors that are difficult to determine 
experimentally. 
 
We demonstrate a novel method for estimating effective intracellular 
conductivities in cardiac monolayers by considering the transmembrane 
potential distributions following a long-duration hyperpolarizing stimulation 
and fitting a continuous model to experimental data to estimate effective 
conductivities with less than 10% error. Estimating these conductivity 
values will allow us to determine the functional consequences of certain 
interventions that affect structure and to develop computational models to 
help elucidate the mechanisms of conduction failure. 
 

COMPUTATIONAL METHODS 
 

The Continuous Bidomain Model 
The continuous model of cardiac tissue  represents the tissue as two 
coupled homogenous domains connected by a membrane. Our 
continuous model provides an estimation of the voltage distribution given 
a intracellular conductivity tensor 𝒈𝒊 = (gix, giy) 
 

State Variables 
𝜑𝑒 : Extracellular potential   𝜑𝑖 :  Intracellular potential 
   
Domain and Boundary Conditions: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Governing Equations:  
 

𝛻 ∙ 𝒈𝒊 𝛻 𝜑𝑖 =  𝛽 𝐼𝑚 
𝛻 ∙ 𝑔𝑒𝛻 𝜑𝑒 =  −𝛽 𝐼𝑚 −  𝛽𝐼𝑠𝑠𝑖𝑚 

𝑉𝑚 = 𝜑𝑖 −  𝜑𝑒  
 

Where 𝐼𝑚=   𝐼𝑚 (𝑉𝑚) is the sum of the capacitive and ionic currents, 𝑔𝑖 is the tensor of bidomain 
intracellular conductivities, 𝑔𝑒 is the scalar value of bidomain conductivity in the isotropic 
extracellular space,𝛽 is the surface area to volume ratio for each cell, 𝑉𝑚 is the transmembrane 
potential, and 𝐼𝑠𝑠𝑖𝑚 is the applied extracellular stimulus current 

 
The governing equations were solved over the domain using the FlexPDE 
finite element method package. The package utilizes adaptive mesh and 
timestep techniques to efficiently generate an accurate solution. 
Extracellular conductivities were assumed to be fixed at literature values 
of (gex, gey) = (3.0, 1.9) mS/cm 
 

 
 
 

  
 

 
 
 
Parameter Estimation 
In order to determine the conductivity tensor 𝒈𝒊 that best estimates the 
bidomain conductivities of the known tissue, an error function was 
defined. All data were first spatially averaged over 135 circular regions to 
simulate the format in which voltage distribution data from experimental 
preparations would be recorded. The error was then defined as 

𝐸 𝒈𝒊 =  
1
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where N is the number of sensors, Vi
true

  is the experimental or known 
transmembrane voltage from the ith sensor, and Vi

sim(g) is the 
transmembrane voltage from it ith sensor, using conductivity tensor 𝒈𝒊 
 
 
 
 
 
 
 
 
 
 
 
 
An technique was then developed to find the conductivity tensor that 
minimizes the error function.  A differential evolution algorithm as 
described by Storn et al. was coupled with the continuous model 
simulation and error calculation steps. [3]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULTS 
Validating the augmented monodomain formulation 
We validated the augmented monodomain formulation for bath stimulation 
of monolayers by comparing results of the continuous true bidomain with 
the continuous augmented monodomain over a variety of conductivities. 
 
 
 
 
 
 
 
 
 
 
 
Validating the estimation method 
We validated the estimation method by generating surrogate data using a 
continuous model with known intracellular conductivity values. We then 
performed spatial averaging of this data as previously described and used 
it in place of the experimental data in the error formula. The Differential 
Evolution algorithm  provided consistently accurate estimations of the 
intracellular conductivity values. gix was estimated with an average of 
0.6% error and giy was estimated with an average of 1.05% error.  
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The Augmented Monodomain Formulation for Bath Stimulation of 
Monolayers 
The addition of a large bath to the bidomain model significantly increases 
the computational load involved in solving the system. In order to maintain 
the ability to perform bath stimulation while reducing the computational 
intensity of the simulation, we developed a novel augmented monodomain 
model for bath stimulation that applies the concept of the activating function 
that is commonly used in neural electrophysiology. 
 
In the bath region of the bidomain model, the extracellular voltage is the 
primary variable of interest while in the cell layer itself, the intracellular 
potential plays a relatively dominant role in determining the steady state 
transmembrane potential, with the extracellular potential providing the 
driving force during stimulation. We can therefore decouple the bath from 
the tissue layer and consider the two regions separately. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simplifying the Membrane 
Preliminary evidence from our group suggested that membrane 
resistance was not constant during subthreshold stimulation. Therefore, 
the membrane resistance was modeled as a function of membrane 
potential, approximately fitting data from  the Pandit membrane model.[1] 
 
 
 
 
 
 
 
 
 
 
 
 
Generation of Surrogate Data from Discrete Model 
In order to test our estimation system, surrogate experimental data was 
generated from a discrete model of cardiac tissue that models individual 
cells and the gap junctions connecting them. The benefit of surrogate data 
from a discrete model is that the effects of individual cells and their 
properties are incorporated as in experimental preparations, but the 
“ground truth” conductivities can be mathematically determined to 
compare to the estimated values.   
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Figure 1. Domain and boundary conditions for continuous model 

 
 
 
Estimation of Conductivities from Surrogate Data 
Cases over a wide range of conductivity values and anisotropy ratios 
were tested. In relatively anisotropic surrogate tissues, the conductivities 
were estimated with an average 5.25% error (± 2.26%) along the principal 
axis of anisotropy and an average 9.92% error (± 6.83%) perpendicular to 
the principal axis of anisotropy.  In relatively isotropic tissues, the 
conductivities were estimated with an average error of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSIONS AND FUTURE WORK 
We have demonstrated the ability to use our spatially averaged error 
calculation and  differential evolution method to estimate intracellular 
conductivity values with less than 10% error, using surrogate data from a 
discrete model whose conductivities can be measured. 
 
Our preliminary data suggests that as tissues become more anisotropic, 
accuracy of estimates along the principal axis of anisotropy increases and 
accuracy perpendicular to the principal axis decreases.  
 
We plan to use this method to estimate conductivities of tissue 
engineered (experimental) monolayers by measuring potentials using a 
voltage sensitive optical dye. These resulting estimated conductivities will 
be used to generate continuous models of cardiac tissue that replicate the 
properties of the tissue engineered monolayers. 
 
We will also use this method to measure the bulk conductivity properties 
of discrete tissues, which will allow us to examine how micro-structural 
changes in our tissue affect conduction in the bulk tissue. 
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Figure 2. Decoupling of the bath and tissue layer domains   

Figure 7. Illustration of one generation of Differential Evolution algorithm. This 
process is repeated until the maximal generations are reached or the minimum error 
threshold is reached 

Figure 4. To generate discrete tissue models, oval template cells are laid over the domain 
and then expanded to fill the domain. Gap junctions are identified at neighboring cells and 
the cells are then divided into elements for finite element calculations. The tissue generator 
allows for adjustment of cellular anisotropy and cellular cleft spacing [2] 

Known Conductivities Estimated Conductivities 
gix = 2.302 mS/cm  
giy = 0.246 mS/cm 

gix = 2.4254 ± 0.00012  mS/cm  
giy = 0.2428 ± 0.00004  mS/cm 

gix = 1.487 mS/cm  
giy = 0.203 mS/cm 

gix = 1.5754 ± 0.00012  mS/cm  
giy = 0.1839 ± 0.00005 mS/cm 

gix = 1.591 mS/cm  
giy = 0.188 mS/cm 

gix = 1.5561 ± 0.00005 mS/cm  
giy = 0.1543 ± 0.00001 mS/cm 

Table 1. Several examples of known and estimated conductivities are shown 
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𝛻 ∙ 𝒈𝒊 𝛻 𝑉𝑚 =  𝛽 Im −  𝛻 ∙ 𝒈𝒊 𝛻 𝜑𝑒
 
  

𝛻 ∙ 𝒈𝒊 𝛻 𝜑𝑖 =  𝛽 𝐼𝑚 
𝛻 ∙ 𝑔𝑒𝛻 𝜑𝑒 =  −𝛽 𝐼𝑚 −  𝛽𝐼𝑠𝑠𝑖𝑚 

𝑉𝑚 = 𝜑𝑖 −  𝜑𝑒  

𝛻 ∙ 𝒈𝒆𝛻 𝜑𝑒 =  −𝛽𝐼𝑠𝑠𝑖𝑚 

Rm = 3.984 e 0.06003*Vm + 3.982 
R2 = 0.9999992
  

Figure 3. Membrane resistance as a function of membrane potential for the 
Pandit membrane model, and its functional approximation 

Figure 5. A sample voltage distribution following hyperpolarizing stimulation of the discrete 
model. The Pandit membrane model was used to generate surrogate data 

Figure 8. Sample comparison of distributions from true bidomain (left) and 
augmented monodomain (right) shows no difference in result but the augmented 
monodomain significantly reduces computational load for multiple runs  

Figure 9. Sample comparison of contours from surrogate  data (left) and continuous 
model with estimated conductivities (right) in an anisotropic tissue. For this example, 
error in estimates was 5.36% along axis of anisotropy and 1.31% perpendicular to axis 

Figure 6. Sample surrogate data  (left) and corresponding spatially averaged data (right)  
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